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Abstract

The retina is a popular model system in neuroscience and its processing of vi-
sual information has been studied in great detail. However, a lot of functional
properties like adaptational processes or circuit level computations remain poorly
understood. One example is color vision which has only been studied in detail in
mammals but is little explored for other vertebrates. For a complete understanding
of a neuronal system it is the gold standard to cover all Marr’s levels of explanation
(implementation, algorithm and computation). Yet this is challenging as it often
requires utilizing a variety of experimental, analytical and modeling approaches.
This challenge is also reflected in existing functional models of retinal activity,
which often focus on the algorithmic model, like models of system identification.
These models lack a clear biologically interpretable implementation compared to
detailed mechanistic models, and can not easily reveal the performed computa-
tions. In addition, linking complex neural models to experimental data becomes
challenging, especially if the aim is to draw conclusions about the inferred model
parameters.

In this thesis, I present models for different neuronal mechanisms in the retina and
how they can be fitted to experimental data. I show how abstract models of sys-
tem identification can be enhanced by biological plausible components to replicate
adaptational processes, to make the models biologically more interpretable and to
allow for in silico experiments which are otherwise not possible. In a second line
of research I show how processing in the retina is differentially tuned depending
on the position in the eye. On the example of UV photoreceptors in zebrafish I
present behavioral, anatomical and functional differences, as well as synaptical
tuning properties to highlight features of the visual signal. In a final study, I inves-
tigate color processing at the first retinal stage in zebrafish, and how it is linked
to efficient coding principles for color vision. Throughout the presented work, I
exploit the framework of simulation based inference to link experimental data to
the computational models by additionally providing uncertainty estimations.

In summary, in this thesis I present an approach to fill the gap between black-box
and detailed biophysical modeling which can be a powerful tool to provide de-
tailed explanations spanning from a functional to an implementational level. Ad-
ditionally, I show in integrative studies of UV and color processing in cones how
a system can be precisely understood by carefully covering different levels of ex-
planation. To link the experimental data to computational models I showcase the
potentials of simulation based inference in neuroscience, and how neuroscience
can profit from recent developments in machine learning.
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Introduction

Our perception of the world is highly shaped by the visual input we receive. Vision
is maybe the most important sense for humans as well as for many other species.
It starts in the retina, which is a thin neural tissue at the back of the eye and acts
as a light detector and processor for visual stimuli. The retina is an exceptional
model system in neuroscience since experimentalists can control the input to the
system and have developed various techniques to read out information from all its
different neuronal layers. The retina has been studied in great detail and although
the overall architecture is settled, many mechanisms and processing steps remain
poorly understood (Masland, 2001; Baden et al., 2018).

To understand the processing of the visual signal, its representation in the neural
system and the performed computations, it is crucial to develop accurate models
of the underlying system. Models can help to formalize ideas; they can distill
the current knowledge, and test and produce new hypotheses. In addition, models
can provide explanations for observed phenomena and help to gain understanding
for complex processes. For the retina, these models can range from a molecular to
cellular to network level, depending on the scientific problem under consideration.
Once a model is developed for a particular problem, it remains to link the model to
experimental data. As complex neuronal models often lead to analytically unfea-
sible likelihood functions, parameter inference can not be achieved by classical
maximum-likelihood estimations. To deal with the situation of unknown like-
lihood functions but take at the same time different sources of uncertainty into
account, one framework for parameter inference is Approximate Bayesian Com-
putation (ABC), which is used in various scientific fields (Sisson et al., 2018).
Thereby the model is considered as a ‘black-box’, which does not allow to access
any internal information. ABC estimates the distribution of model parameters
which is consistent with the experimental data by iteratively evaluating the model
on different parameter sets. In recent years, a modified concept of parameter in-
ference has gained attraction due to its efficiency: Simulation based inference
(SBI) makes use of surrogate probability functions (Cranmer et al., 2020) and its
potentials are currently explored in neuroscience (Gongalves et al., 2020).

In this thesis, I will present models for different neuronal processes in the retina
and how they can be fitted to experimental data. I will show that the ribbon
synapses, a highly specialized synapse in the retina (Moser et al., 2020), is an
important element for short term adaptational processes. From this synaptic level,
I will move on towards a network level of temporal processing in the retina which
is necessary to explain the diverse responses of different cell types. I will show



how abstract models of system identification (SI) can be enhanced by biologi-
cal plausible components to make them more interpretable and allow for in silico
experiments which are otherwise not possible.

In a second line of research I will show how processing in the retina is differen-
tially tuned depending on the position in the eye. On the example of UV pho-
toreceptors in zebrafish I will present behavioral, anatomical and functional dif-
ferences. In addition, I will investigate how single synapses of UV photoreceptors
are regionally tuned to process and highlight different features of the incoming
signal, using computational modeling.

In a final study, I will unravel color processing at the first retinal stage in zebrafish.
We will see how functional processing can be linked to the performed computation
and efficient coding principles for color vision (Buchsbaum et al., 1983).
Throughout the presented work we will see how the framework of SBI can be
exploited in neuroscience to account for stochastic processes but also to link flex-
ibility in the model to uncertainty in the parameter space.



Background

The Retina

In this section, I will give an overview of different biological aspects of the retina
as well as of techniques to record functional activity in the retina. It is not intended
to be an extensive review but rather highlights specific topics like ribbon synapses
or color vision on which the results of this thesis are based.

General Layout of the Retina

The retina is a thin tissue at the back of the eye in which light is detected, visual
input gets processed and the signal is finally send to higher brain areas. Although
different animals have different needs to cope with their specific natural envi-
ronment, the overall structure of the retina is surprisingly well conserved across
species (Baden et al., 2020).

The retina consists of multiple stacked neuronal layers, each containing different
neuron types (Figure 1). We can divide them broadly into three layers of cell bod-
ies and two processing layers. In the processing layers the dendrites or axons of
the corresponding neurons stratify and form synapses and the signal is processed
to form multiple parallel output channels to the brain (Masland, 2012).
Photoreceptors (PRs), the light sensors of the eye, are located in the outermost
layer. They are divided into rod and cone PRs and detect light in their outer seg-
ments. Rod PRs mainly contribute to vision under dim light conditions, whereas
different cone types form the basis of color vision by responding differentially to
light of different wavelengths (see Section Color Vision). Before the output of the
PRs is passed on to the bipolar cells (BCs), the signal is shaped by horizontal cell
(HC) feedback in the outer plexiform layer (Chapot et al., 2017b). Already in BCs
the signal diverges into multiple parallel channels, which have different properties
and code different features of the stimulus (Euler et al., 2014; Franke et al., 2017b;
Schreyer et al., 2020). In the second synaptic layer, the inner plexiform layer, the
signal is further modulated by amacrine cells (ACs) which give mainly inhibitory
feedback to BCs and ganglion cells (GCs) (Diamond, 2017). GCs denote the out-
put neurons of the retina which typically collect information from multiple BCs
and ACs and send the processed input via their long axons to different brain areas
(Baden et al., 2016; Baden et al., 2018).

As in other sensory systems, we can also find highly specialized synapses in the
retina. Both, PRs and BCs express ribbon synapses to transmit the signal by

3



Outer and
inner
segments

Outer
nuclear layer

Outer
plexiform layer L

Inner
nuclear layer

Inner
plexiform layer

Ganglion cell
layer

Figure 1: The Retina. In the retina light is detected by photoreceptors (PRs)
which pass the signal on to bipolar cells (BCs). From here it is further transmitted
to ganglion cells (GCs), which project the signal to the brain. In between, the
signal is shaped by interneurons in two processing layers: horizontal cells (HCs)
operate in the outer and amacrine cells (ACs) in the inner plexiform layer. Figure
adapted from Franke et al., 2017a.

releasing glutamate onto the proceeding neuron which enable them to accentuate
different coding properties (see Section Ribbon Synapses).

Although the general layout of the retina is similar across species, there exist also
a lot of anatomical as well as functional differences. Not only color vision has
evolved to different numbers of distinct cone types, but there exist also different
complexities in retinal processing. One striking example is the midget pathway
in primates, which allows high spatial resolution. Here, PRs in the foveal center
of the retina map one-to-one to GCs, which means that only little spatial informa-
tion is pooled and processed before the signal is send to the brain (Sinha et al.,
2017). However, a more common arrangement is found in mice, where each PR
contributes to different processing pathways. In mice we find more than 30 paral-
lel output channels which cover the field of view in a mosaic like fashion sending
the processed signal to the brain (Baden et al., 2016).

These adaptations are often linked to the efficient coding theory (Barlow et al.,
1961). Species have different needs and are exposed to different evolutionary
pressure and therefore developed different coding strategies. One additional eco-
logical variable is the varying input statistic. The habitats of different species
have varying light statistics, and linking these inputs to computational principles,
but also to behavioral consequences, is still an open challenge that has received

4



substantial attention over the last years (see also Datta et al., 2019 for further
discussion).

To understand the underlying principles of vision we therefore need to study dif-
ferent species as model animals, to be able to compare shared mechanisms and
identify specific adaptations. While the mouse and also primates are well studied
model animals, in recent years (larval) zebrafish gained more attention boosted by
the development of new experimental techniques (Baden et al., 2020).

Ribbon Synapses

Ribbon synapses are featured in many sensory systems of vertebrates, such as in
auditory hair cells, the vestibular system and especially in the retina (LoGiudice
et al., 2009, reviewed in Moser et al., 2020). In the retina they can be found in
rod and cone PRs as well as in BCs. They release the excitatory neurotransmit-
ter glutamate onto the subsequent cell. Ribbon synapses are almost exclusively
found in early stages in the retina and seem to be especially advantageous for the
signaling of early sensory information (Lagnado et al., 2015). They share many
fundamental properties with conventional synapses, but can operate in two pro-
cessing modes: Besides fast transient release of gluatamate they support a contin-
uous mode of release, which is fundamental for the encoding of continuous visual
stimuli (Baden et al., 2013a).

In PRs and BCs changes of membrane potential activate presynaptic calcium ion
(Ca?*) channels and the increase of intracellular Ca?>T concentration drives the
glutamate release. The glutamate release is mediated by the ribbon, a protein
complex, which acts as a conveyor belt by binding vesicles to active zones and
prime them for future release (Sterling et al., 2005; Lagnado et al., 2015). The
number of ribbons per synapse varies between species and cell types. While rod
terminals in mice only exhibit a single ribbon, cone terminals usually have mul-
tiple ribbons (10-50 in mammals), and BCs can have up to hundred such protein
complexes (Baden et al., 2013a). Also the anatomical properties of ribbons can
vary widely. While rods generally have large ribbons that can dock many hun-
dreds of vesicles at a time, cones usually exhibit multiple smaller ribbons, often
positioned at different release sites (Baden et al., 2013a).

The specific molecular and structural tuning of ribbon synapses can enhance dif-
ferent coding properties like low-noise transmission (Hays et al., 2021), tempo-
ral precision (James et al., 2019) or high- vs low-amplitude oscillatory behavior
(Bellono et al., 2018). But linking this specific molecular and structural tuning to
general functional coding rules remains still an open challenge.



Color Vision

The basis of color vision are different types of PRs, which are sensitive to dit-
ferent wavelengths of the electromagnetic spectrum. The eyes of vertebrates de-
veloped evolutionarily from a common ancestor, which had four distinct types of
cone PRs. These cones differed in their expression of light-sensitive proteins, the
opsins. Ancestral cone opsins had their peak sensitivities in the spectrum of UV,
blue, green and red light (Baden et al., 2019). The number of cone types in ver-
tebrates varies now across species from one to five. In mice, for example, there
exist only two types of cones (sensitive dominantly to short (UV) and mid (green)
wavelengths (Szel et al., 1992)), in primates we find three types (blue, green and
red), whereas in zebrafish we still find all four ‘ancestral’ types of cones (reviewed
in Meier et al., 2018).

While some key elements like the expressed opsins are conserved across species, a
lot of tuning mechanisms developed at different levels of the retina. The structure
of PRs in reptiles and birds is for example enhanced by oil droplets which form
micro lenses. These lenses sharpen additionally the spectral tuning function of
the cones at the cost of a lower overall sensitivity (Baden et al., 2019). Other
adaptations are for example different ratios between the cone types (in mice we
only find about 5% pure short-wavelength cones (Haverkamp et al., 2005)) or a
varying cone type distribution across retinal regions. The best known example is
the primate fovea, where no blue cones are located at all (Roorda et al., 1999).
These different adaptations imply different coding strategies for color vision.
From a coding perspective, at least two distinct cone types for a discrimination
of wavelength and intensity information are needed. By comparing these sig-
nals, color opponency is formed which was theoretically studied by Buchsbaum
et al. (Buchsbaum et al., 1983). In vertebrates, color opponency is already formed
in the outer retina where HCs mediate inhibitory feedback between photorecep-
tors (Chapot et al., 2017b). The best known opponency motif is the blue-yellow
circuit in the primate retina which generalizes to other mammals (Baden et al.,
2019). Color opponencies in zebrafish cones is not yet established but will be
investigated in Study V for the first retinal stage. However, how these opponent
signals are integrated in the upper visual stream is not yet fully understood.

Functional Recordings in the Retina

In neural circuits we can measure the functional activity in terms of at least two
proxies: first we can measure the electrical signal which propagates through the
neurons, and second, we can measure the concentration of neurotransmitter or
second messenger molecules, to quantify the synaptic or intracellular activity.

Historically, functional recordings were first made in single neurons by measuring
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the electrical signal via sharp electrodes (Hodgkin et al., 1952; Hubel et al., 1959).
This enabled the isolated access to an individual neuron, and with the development
of the patch-clamp technique even to single ion channels (Neher et al., 1976). In
recent years this technique was expanded to the recording of up to a dozen of
neurons simultaneously in brain slice preparations (Wang et al., 2015; Peng et
al., 2019). However, these challenging multi-patch experiments which allow the
recording of whole neural circuits, are not yet well established for the retina. In the
retina the patching technique is currently limited to the recording of single or pairs
of cells, but we also see exciting developments for multi-patching experiments
(Narayanan, 2018).

Another tool for recording the electric activity in neurons are multi-electrode ar-
rays (MEAs), which enables the recording of spiking activity in whole cell popu-
lations. With MEAs, extracellular electrical potentials are recorded by hundreds
or thousands of electrodes, which detect signals from all possible sources around
(Obien et al., 2015). This could also include different sources of noise, but with
advances in nanotechnology new concepts and different layouts are developed
which improves the recording quality (Spira et al., 2013; Zeck et al., 2017). For
the retina, typically high resolution MEAs with spatial resolution in the range of
10pm and up to tens of thousands of electrodes are used (Zeck et al., 2017). These
setups with recording frequencies of several kHz generate large amounts of data
that need to get highly processed before they can be interpreted meaningfully. Par-
ticularly, the signals need to be assigned to the individual units (neurons), called
‘spike sorting’, which is still a non-trivial task in neuroscience (Rey et al., 2015).
Importantly, traditional MEAs only allow extracellular recordings which lead to
low signal to noise ratios for non-spiking neurons (but see Spira et al., 2013 for
further discussion). In the flat mounted retina they favor recordings from the GC
layer due to its spatial accessibility but vertical slices allow to access different
retinal layers simultaneously (Lee et al., 2020).

The second approach of recording neural activity is to measure the change in
concentration of neurotransmitter like glutamate or second messengers like Ca**.
Typically this can be done via optical imaging, by using specialized microscopes.
But to record functional activity in the retina via optical imaging, we have to
overcome two major drawbacks: first of all, the neural activity has to be made
visible and second, we have to avoid a stimulation of the retina - a light-sensitive
tissue - by the light induced by the imaging system. Both can be addressed by
two-photon imaging, a widely used technique for studying the retina (Euler et al.,
2019). The variant of two-photon imaging which was used in the studies presented
later works as follow: Fluorescent indicators which change their conformation
when binding to a target molecule (e.g. a specific neurotransmitter like glutamate)
are delivered to the neural tissue. If they are, in the case of two-photon imaging,



additionally excited by two photons, they emit light of a specific wavelength. The
relative change of the recorded fluorescence signal F' acts as a proxy for the neural
activity, commonly reported as AF/F. To avoid the stimulation of the retina
by the light used for fluorescence excitation an infrared laser outside the visual
spectrum is used (Denk et al., 1990; Denk et al., 1999, see Euler et al., 2019 for a
state of the art discussion).

Commonly used fluorescence indicators to record the excitatory activity in the
retina are the genetically encoded indicators of the GCaMP family (Chen et al.,
2013; Akerboom et al., 2012) or iGluSnFR (Marvin et al., 2013), which target
Ca?* and glutamate respectively. Genetically encoded indicators can be intro-
duced into the tissue by a viral approach or permanently expressed in transgenic
animal lines. Compared to synthetic indicators which allow ‘bulk recordings’ of
unspecific neuronal populations, genetically encoded indicators can target neu-
ronal subsets selectively (e.g. genetically defined cell types) (Grienberger et al.,
2012). Additionally, multiple indicators can be combined to identify specific sub
populations or record the concentration of multiple messengers simultaneously
(Specht et al., 2017). In addition to the indicators which are targeted at neuromes-
sengers, new and more effective voltage dyes become more and more popular.
They change their conformation in response to a change in membrane potential
(Chamberland et al., 2017), but as all indicators, they only allow to access relative
changes. The temporal precision of the recorded signal is limited by the dynamics
of the indicators, which integrate the signal over several hundreds of milliseconds
(Chen et al., 2013; Marvin et al., 2013), as well as by technical constraints of
the experimental setup (Euler et al., 2019). But with technical advances and un-
der specific experimental conditions high temporal resolutions up to the precision
of the timing of single glutamate vesicles can be achieved (James et al., 2019).
Besides the temporal resolution, different expression levels of the indicator and
various noise sources make the data interpretation additionally challenging (Euler
et al., 2019).

These various techniques enable us to record the neuronal signal in all layers of
the retina, while having control of the (visual) input to the system. This is not the
case for higher brain areas or tasks like memory or decision making and makes
the retina, and more generally the visual system, an outstanding model system in
neuroscience. The popularity of the visual system is also reflected in a large body
of literature on computational models, reaching from retinal models to models of
higher visual areas. In the next section I will give a brief overview on different
model classes.



Computational Models of the Visual System

Models in computational neuroscience encompass a wide range of details. One
extreme denotes detailed models for the diffusion of calcium molecules in single
dendrites with exact morphologies (De Schutter et al., 1998; Anwar et al., 2013).
The other extreme denotes highly abstracted network models that represent neu-
ron populations as integrate and fire neurons (Brunel et al., 1999, reviewed in
Burkitt, 2006) or deep neural network models (DNNs) which are able to model
the processing in higher brain areas (Yamins et al., 2014; Cadena et al., 2019).
Importantly, there is not a single model explaining all phenomena but the appro-
priate level of modeling depends on the specific scientific question at hand. Here
I want to give a brief overview of different levels of computational models in neu-
roscience which might be relevant for the retina and the visual system. This is
a non-exhaustive list, and is meant to give some examples and to separate into
different model categories.

An influential perspective on different model categories was given by D. Marr
(Marr, 1982). He grouped models into three levels of abstraction and divided
between the hardware implementation, the representation and algorithm, and the
computational theory. These levels are all coupled and influence each other, but
there is still “a wide choice available at each level” (Marr, 1982).

On the first level, we can place mechanistic, often biophysical Hodgkin-Huxley
like models (Hodgkin et al., 1952) in which the different model components are
biologically plausible and interpretable. Since they are computationally costly,
they are mainly restricted to single cell models (Fohlmeister et al., 1997; Koch,
2004), or models of small networks (Gerstner et al., 2002, see also Guo et al.,
2014 for an overview). These models include different ion channels, their dynam-
ics, their density distributions and synaptic processing on various stages of detail.
They can be defined deterministically, or incorporate stochasticity at different lev-
els, often in form of channel noise (Goldwyn et al., 2011) or stochastic synaptic
release dynamics (Maass et al., 1999). Again the phenomenon under investigation
but also the precision of experimental data dictates the nature of the model. For
example, data from two-photon imaging often integrates the signal over the time
scale of several hundreds of milliseconds, whereas biological plausible channel
noise or synaptic release noise act on much smaller time scales. Consequently,
they play often a minor role while working with two-photon data.

A well studied mechanism in the retina is for example the photo-transduction
cascade in PRs which can be described by a mechanistic model consisting of a
system of ordinary differential equations for more than 90 biochemical processes
(Invergo et al., 2014). This level of detail is not yet reached for other retinal cell
classes, whose physiological properties are not as fully understood and often only
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fragmented knowledge across different model species exists. One noteworthy at-
tempt to combine this knowledge across species to inform a multi-compartment
Hodgkin-Huxley like model for mouse BCs is Oesterle et al., 2020, where a large
body of literature was included to inform priors for simulation based inference
(see next section). The study of other retinal cell types and interaction schemes
resulted in many pathway specific models. For example, models for local signal
processing in horizontal cells (Chapot et al., 2017a), for direction selective circuits
(reviewed in Mauss et al., 2017) or for adaptation processes (Jarsky et al., 2011)
have been proposed. Nevertheless, already for a pathway specific network level,
a detailed explanation including the biochemical processes is missing most of the
time and more abstract levels of modeling are chosen (Olveczky et al., 2007).
Constructing a detailed mechanistic model which covers different retinal process-
ing states and reproduces realistic responses to different, also naturalistic stimuli,
is still missing and not yet attainable.

Going one level up in Marr’s categorization, we can place models of system iden-
tification (SI), which aim to maximize the predictive performance and model the
input-output relationship (Wu et al., 2006; Freeman et al., 2015; Shah et al., 2019).
Such models can come in different flavors, such as statistic Poisson models (Rieke,
1999), including generalizations for large populations (Sokoloski et al., 2020)
or the influential model from Pillow et al., 2008, which incorporates feedback
terms and linear-non-linear subunits. Furthermore, parallel to the advances in
deep learning, there exists an increasing body of work based on DNNs (reviewed
in Kriegeskorte, 2015, also Mclntosh et al., 2016; Batty et al., 2016; Klindt et al.,
2017). These models are often more inspired than constrained by the structure
of the neural system which they model, but subunits in the respective models can
sometimes be interpreted or linked to subunits of the neural system (Real et al.,
2017; Maheswaranathan et al., 2018). Models of SI are able to predict the activity
of neurons with remarkable accuracy. They allow us to gain insights into possible
algorithmic implementation for different computational tasks but they keep us in
the dark about the hardware, i.e. biological implementation. At the same time,
drawing conclusions about a representational level is not straightforward and we
need to apply techniques such as representational similarity analysis to compare
the biological to the in silico representation (Kriegeskorte et al., 2008).

Coming back to the retinal processing stages, models of SI are commonly used
for single cell as well as for network models. In contrast to the detailed PR model
mentioned above, on the level of SI PR are often expressed as convolutions be-
tween potentially biphasic kernels with the input signal (Schnapf et al., 1990;
Baden et al., 2014). This is computationally much more efficient and reduces
the number of free model parameters considerably, but not all properties, such as
adaptational processes, can be covered.
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The signal processing in other retinal cells is often summarized in a similar man-
ner by linear and non-linear units, with potential time delays, feedback terms
and recurrencies (Batty et al., 2016). While the processing in BCs often remains
under-explored (but see Schreyer et al., 2020) the processing in the output stage of
the retina, namely the GC signals, has been studied intensely. GC models range
from small networks of linear-non-linear subunits with feedback terms (Pillow
et al., 2008), over more precise descriptions of different receptive field properties
and non-linearities (Shi et al., 2019) to DNNs, which became more and more pop-
ular in recent years (Klindt et al., 2017; Lindsey et al., 2019; Tanaka et al., 2019).
Other models aim to describe specific retinal processing steps, like contrast adap-
tation (Baccus et al., 2002; Kastner et al., 2019), color processing (Heath et al.,
2020) or motion detection (see also Gollisch et al., 2010).

Finally, there are approaches which try to bridge the gap between models of SI
and pure mechanistic models: Ozuysal et al. tried to fuse the two approaches into
a hybrid model. They defined a linear-non-linear base model and added a first-
order kinetic process (Ozuysal et al., 2012). The kinetic block captures different
processes for contrast adaptation, but although it can be linked to subunits of the
retinal network, a clear biophysical interpretation is difficult. This highlights the
challenges of constructing high performing and biophysically interpretable mod-
els.

On Marr’s third level, the computational theory, the efficient coding hypothesis is
a guiding principle for the visual system (Attneave, 1954; Barlow et al., 1961).
The hypothesis postulates that the visual system is designed to process the visual
information most efficiently using its limited capacity. For the retina this translates
into the hypothesis of optimal coding strategies under different constraints such as
the limited capacity of the optic nerve. Already Attneave and Barlow (Attneave,
1954; Barlow et al., 1961) proposed that optimality depends on the environmental
statistics and can be studied in the framework of information theory (Cover, 1999).
This dependency on the input statistic caught considerable attention (Simoncelli
et al., 2001) and offers for example an explanation for the sparseness of retinal
spike-trains (Pitkow et al., 2012) or the spatio-temporal profiles of some GC types
(Ocko et al., 2018). An analysis of color processing in the framework of optimal
coding highlighted the role of color opponency to decorrelate the otherwise highly
correlated color channels (Buchsbaum et al., 1983).

However, the formalization of ‘optimal’ poses still various questions. Often max-
imally decorrelated signals are viewed as optimal, but see Pitkow et al., 2012 for
an extended discussion. An other approach is to maximize the mutual information
between stimuli and responses, or to use the reconstruction error of some optimal
decoder as a loss function (Gjorgjieva et al., 2014; Ocko et al., 2018; Gjorgjieva
et al., 2019). But it has been shown that different loss functions as well as differ-
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ent assumptions on noise sources in the neural system can lead to different optima
for the neural processing (Brinkman et al., 2016; Gjorgjieva et al., 2019). While
the efficient coding hypothesis still sparks research ideas, a cautious look must
therefore be taken on the exact formalization of the problem.

The three levels of Marr’s categorization give us a rough map to orient in the vast
and diverse landscape of computational models. But once the desired model has
been constructed, the next step is to link the model to experimental data. Param-
eter inference is therefore a crucial, but often neglected topic in computational
neuroscience and thus I will give a short overview in the next section.

Parameter Inference

Parameter inference is the process of determining parameters such that the prede-
fined model is most coherent with the experimental data. There exist many dif-
ferent concepts on how to perform parameter inference depending on the model
framework and model complexity. In this section, I will first present more tra-
ditional concepts of parameter inference in neuroscience before outlining recent
developments in simulation based inference (SBI) methods which were exploited
in Study I, Study IV and Study V.

Common approaches for parameter inference focus on point estimations for one
or multiple parameter sets for best performing models. For some statistical mod-
els, for example integrate-and-fire models, an analytical likelihood function is
available and a closed form solution for the maximum-likelihood estimation can
be computed (Paninski et al., 2004). For other models of SI, solutions for dif-
ferentiable models can be found via gradient descent by taking full advantage of
the achievements in deep learning. In Study II I will show, how deep learning
frameworks can be used for parameter inference even for models of SI which are
enhanced with biologically interpretable components.

For complex mechanistic or non-differentiable models of SI the analytical likeli-
hood function is normally intractable and there is no standard approach to fit these
models to data. The used method depends on the model complexity and the loss
function. It can range from curve fitting functions (for example implemented in
scipy (Virtanen et al., 2020)) to evolutionary algorithms (Back, 1996; Fortin et
al., 2012) and swarm methods (Vaz et al., 2007), which are better suited for high
dimensional parameter spaces and potentially non-convex loss problems.

While these methods are well suited to identify best performing parameters, they
do often not allow to draw conclusions about the inferred parameters directly.
For this purpose, it is important to take the uncertainty of the inferred parameters
into account and investigate the spread of potentially good performing parame-
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ters. Although this can be investigated post-hoc via different approaches of local
sensitivity analysis (Gutenkunst et al., 2007), most methods are based on higher
derivatives and do not take the global parameter landscape into account.

In contrast, simulation based inference (SBI) tries to infer the posterior distri-
bution of the model parameters © on a global scale. As the likelihood function
p(x|©) of the model of interest is intractable, it is also called ‘likelihood-free’ in-
ference. Within this framework, the model is defined via a simulator which can be
evaluated for different parameters, but is otherwise inaccessible. More precisely,
we can generate samples x; ~ p(z|0;), for parameters ©;, but we can not evaluate
the likelihood function p(z|O).

In recent years, SBI approaches gained more and more attention and the need for
efficient methods is increasing in various scientific disciplines which rely on so-
phisticated computer simulations (reviewed in Cranmer et al., 2020, also Durkan
et al., 2018). Following the classification in Cranmer et al., 2020, we can roughly
separate into four different types of inference methods:

(i) The first and most established class is the Approximate Bayesian Compu-
tation (ABC) framework (Sisson et al., 2018). We can illustrate the con-
cept with the most basic approach of rejection sampling: To infer the poste-
rior distribution p(O|xz) for the observed data x,, we draw first parameters
©; from a prior. The parameters for which the simulation z; ~ p(z|©;)
lies within a distance £ > 0 from the observed data x( (for some distance
measure) are accepted and otherwise rejected. Although there exist a lot of
more sophisticated methods, including learning an approximation of the in-
tractable likelihood function (Drovandi et al., 2018) and combinations with
Markov Chain Monte Carlo (MCMC) methods (Robert et al., 2013), the ap-
proximation is only valid in the limit ¢ — 0 which makes it prohibitively
expensive for computational demanding models. Additionally, we need in
general to rerun the inference method for every datapoint xy which is not an
efficient handling of the computationally expensive simulation results.

In contrast, more recent approaches learn a surrogate model of the parameter-
simulation dependency. Once trained, the surrogate model can be evaluated for
multiple datapoints x,. These methods are therefore called amortized methods
and fall into the remaining three classes, depending on the surrogate model they
infer:

(i) Likelihood estimation algorithms learn a surrogate model for the intractable
likelihood. While early approaches focused on parametric (Gaussian) ap-
proaches (Wood, 2010) recent versions use DNNs to approximate the density
over x (Lueckmann et al., 2019; Papamakarios et al., 2019b). In a second
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step samples from the posterior are drawn via MCMC sampling which adds
additional computational overhead.

(ii1) Posterior estimation methods learn directly the posterior. Recent methods
estimate the density over the parameters © via DNNs (Papamakarios et al.,
2016; Lueckmann et al., 2017; Greenberg et al., 2019).

(iv) Ratio estimation methods focus on the estimation of the likelihood ratio
function p(x|©;)/p(x|©;) (Cranmer et al., 2015) or p(z|O;)/p(z) (Hermans
et al., 2020) which is sufficient to draw samples from the posterior via an ad-
ditional step of MCMC afterwards. One key advantage of this method is that
we can formulate it as a supervised classification problem in which a DNN
is trained to discriminate between two different sets of data. The classifier
can then be converted into the likelihood by applying the Neyman—Pearson
lemma, also called the likelihood-ratio trick (see also Cranmer et al., 2020
for more references).

For the latter three classes there exist different algorithms which infer the pos-
terior either in one single round or which are sequentially updating a ‘proposal
prior’ distribution. While updating the proposal prior sequentially can lead to
more sample efficiency, it can defeat the above mentioned amortization effect by
utilizing a specific datapoint xy before evaluating the final posterior.

All SBI methods have in common that the approximation usually happens on mul-
tiple levels: First, high dimensional data x need to be compressed to a low dimen-
sional feature space, called the summary statistics, which are model and prob-
lem dependent. Constructing meaningful, ideally sufficient, summary statistics
is already the first obstacle and is highly influencing all further approximations
downstream. Often ad-hoc summary statistics are constructed with the help of
domain specific knowledge, but new methods for automated construction of sum-
mary statistics are developed (Fearnhead et al., 2012; Jiang et al., 2017; Greenberg
et al., 2019; Chen et al., 2020).

The next approximation happens in the actual estimation step. While ratio esti-
mation methods use discriminator networks to approximate an ideal discriminator,
posterior and likelihood estimation methods highly rely on efficient density infer-
ence methods. Common approaches were mixture of Gaussian models (Lueck-
mann et al., 2017) or kernel density estimations (Gutmann et al., 2016). But with
the development of normalizing flows (Papamakarios et al., 2017; Durkan et al.,
2019) a much more flexible approach is available which is appealing through its
mathematical elegance (reviewed in Papamakarios et al., 2019a).

For the likelihood as well as for the ratio estimation methods an additional ap-
proximation of the posterior is performed via MCMC sampling. Recent work
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highlights that this step must be carried out carefully, otherwise these powerful
methods may be harmed (Lueckmann et al., 2021).

A last approximation happens in presence of limited computational resources. For
all methods increasing numbers of model evaluations normally improve the infer-
ence quality. As this is a minor problem for fast simulators for which millions of
simulations can be run, data efficiency is crucial for computational costly simula-
tors.

This leads to the research direction of active learning. For a more efficient use of
the computational resources, several strategies to sample actively new parameters
in an informative way have been proposed (Gutmann et al., 2016; Lueckmann et
al., 2019; Jarvenpéd et al., 2019). Active sampling can reduce the needed model
evaluations drastically but is adding a computational overhead as well as another
approximation stage. Another promising direction for more efficient algorithms is
to take apart the simulator and gain access to additional information on latent vari-
ables (Brehmer et al., 2020b). Different possibilities for these ‘grey-box’ models
were discussed in Cranmer et al., 2020, and often use advances in machine learn-
ing, like probabilistic programming or automatic differentiation.

Overall SBl is a very active field of research and new ideas and algorithms are pub-
lished continuously (Cranmer et al., 2020). But especially in the absence of the
true posterior distribution p(©|x() or the true model parameter Oy it is challenging
to compare different SBI methods. A first attempt to systematically benchmark
SBI methods highlighted that different evaluation metrics compete with each other
and do not always provide coherent results (but see Lueckmann et al., 2021 for
further discussion). This study, as well as a detailed discussion on recent devel-
opments in SBI (Cranmer et al., 2020), suggest that there is not a single method
outperforming all others, but the method needs to be chosen based on the problem
and the model at hand.

An important step to promote the usage of SBI is to provide open-source tool-
boxes which can be used by the whole scientific community (Klinger et al., 2018;
Gongalves et al., 2020; Tejero-Cantero et al., 2020). The application of SBI meth-
ods to different scientific questions will bring up new challenges and hopefully
lead to further cross-pollination between different scientific fields.
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Results

In the subsequent chapter I will present the different projects which are included
in this dissertation. I will give a motivation and summarize and discuss the main
results for each project. The full papers can be found in the Appendix. I will
start with two studies on bipolar cell modeling which are bridging the gap be-
tween models of system identification and mechanistic models (Study I and Study
IT). Next I will show how processing in the retina can depend on the retinal re-
gion, exemplified by UV cones in zebrafish. First, we will look into behavioral,
anatomical and functional differences between regions (Study III) before we zoom
in more specifically to the level of single synapses (Study IV). In the last part, we
will move to the network level of early retinal color processing — now involving
all cone types — in zebrafish retina (Study V).

Study I: Approximate Bayesian Inference for a Mechanistic
Model of Vesicle Release at a Ribbon Synapse

Published as: Schroder, James et al. (2019) In: Advances in Neural Information
Processing Systems. Vol. 32. pp. 7070-7080

Motivation

Ribbon synapses can be found in different cells of the sensory system and their
computational advantageous are not yet fully understood. In a recent publication,
activity at ribbon synapses of bipolar cells in zebrafish larva was recorded in vivo
with the resolution of single glutamate vesicles (James et al., 2019). The authors
identified multivesicular release events, which are events with multiple glutamate
vesicles released simultaneously. They showed that multivesicular release events
increased the dynamic range and temporal precision of the signal, and are advan-
tageous for the efficiency of information transmission at the synapse.

To model this complex behavior of ribbon synapses, a model that goes beyond
continuous modeling of vesicle movement is necessary to account for the discrete
nature of the code. At the same time, synaptic release is a stochastic process
and including this variability into an adequate model makes parameter inference
challenging as the likelihood function becomes intractable.

Results

We presented a stochastic model of glutamate release at a ribbon synapse in bipo-
lar cells of zebrafish. The model included a linear-non-linear processing stage, fol-
lowed by a synaptic release compartment which modeled multiple discrete vesicle
pools in a biophysically interpretable fashion.
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We fitted the linear-non-linear-release model to two-photon microscopy data with
single vesicle resolution by using a parametric SBI method. The developed infer-
ence method was inspired by Lueckmann et al., 2017, but we inferred the posterior
distributions by applying explicit Bayesian updating rules to parametric prior dis-
tributions. First, we tested the method on synthetic data and showed that it is
able to approximately recover the true parameters, and, at the same time, results
in meaningful variances for the posterior. Next, we applied the inference method
to experimental data and were able to infer parameter regions for which the vari-
ance of the data generated by the model were in the same range as the inter trial
variability of the experimental data. Additionally, the model captured the data in
terms of release event types, but also extrapolated very well to properties such as
temporal precision that were not explicitly optimized for. The model clearly out-
performed a generalized linear model, which could not capture the multivesicular
release events in an adequate way.

Discussion

The presented model continues the work on hybrid models like linear-non-linear
models with a kinetic block presented in Ozuysal et al., 2012, but accounts ex-
plicitly for the biophysical structure and processing at the ribbon synapse. The
different model parameters are therefore biologically interpretable. In Study II we
will see how a deterministic version of the model will serve to make predictions
across different cell types. The SBI approach for parameter inference allowed
us to derive the model parameters from functional two-photon imaging without
highly specialized experiments, which are otherwise often needed to determine
individual parameters.

The developed SBI method falls into class (i) of ‘traditional’ ABC methods, where
no surrogate model is trained but the observed data is used directly to infer a pos-
terior distribution. This approach is less flexible compared to recent developments
(Cranmer et al., 2020), but as highlighted in Lueckmann et al., 2021 choosing an
adequate method is problem specific and traditional ABC algorithms can still out-
perform more recent approaches, especially for fast model evaluations as in our
case.

The presented combination of biophysically inspired mechanistic models with
SBI methods allows the development of more interpretable models where no
closed-form likelihood is necessary. We showed that taking biophysical con-
straints into account can even improve prediction accuracy compared to standard
models of SI, while being able to link different model components to specific
biological structures. The presented model and the developed ideas allowed us
to investigate the more complex system of a whole bipolar cell network in the
following study.
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Study II: System Identification with Biophysical Constraints: A
Circuit Model of the Inner Retina

Published as: Schroder, Klindt et al. (2020) In: Advances in Neural Information
Processing Systems. Vol. 33. pp. 15439-15450

Motivation

In the mouse retina, 14 bipolar cell types exist with functionally diverse stimulus
responses (Franke et al., 2017b). Previous work has shown that standard linear-
non-linear models can not adequately cover the temporal response properties of all
BC types and miss temporal adaptation processes or complex feedback structures
(Zhao et al., 2020). These feedback structures arise from more than 60 different
amacrine cell types, which is numerically the largest class of cell types in the
mouse retina. A complete understanding of their functional processing is still
lacking and only some fundamental principles, like the separation in locally and
globally processing ACs, and some specific properties, like direction selectivity,
have been studied in detail (Masland, 2001; Diamond, 2017).

The challenge was to build a computational model of temporal processing in BCs
which is able to reproduce the functional fingerprints of all 14 BC types and at the
same time models the structure of the complex AC network as good as possible.

Results

Our model was highly inspired by Euler et al., 2014, which summarizes differ-
ent processing blocks for BCs. We built a bipolar cell network (BCN) model of
temporal processing in the inner retina, which consists of two main parts: (i) the
vertical pathway with 14 parallel channels, each a deterministic version of the
linear-non-linear-release model from Study I; (i) the AC network, modeled by
a local and global feedback structure, accounting for the different receptive field
sizes of AC types (see Appendix B for a schema). We implemented the model in
a fully differentiable manner in pyforch. We then trained it end-to-end via gra-
dient descent on BC responses to a local and global ‘chirp’ stimulus (Franke et
al., 2017b). The model bridges the gap between pure black-box models of SI
and detailed biophysical models: while still biophysically interpretable, the BCN
performs on par with or slightly better than a state of the art long short-term mem-
ory (LSTM) model. Importantly, it generalizes well to different test datasets of
sinusoidal modulations as well as naturalistic stimuli.

As a next step, we compared the learned connectivity weights to a biological
connectome of the inner retina, extracted from published electron microscopy
data (Helmstaedter et al., 2013) and found striking similarities. Additionally, our
model was able to reproduce in silico pharmacological experiments by blocking
specific pathways or feedback structures, suggesting that it had learned key circuit
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functions. As a final step our model predicted biophysical properties of the ribbon
synapses, suggesting that these differences could play a key role in the emergence
of different BC types.

Discussion

In this work we linked a SI approach with mechanistic components on a circuit
level. The model has a high predictive performance while still being biological in-
terpretable. In particular, it enabled us to make predictions on the structure of the
biological system, using only information from functional recordings. These pre-
dictions can be tested experimentally, which is not possible with standard black-
box models of SI.

Comparing the learned connectivity structure to experimental data showed that
the model picked up some key functional circuits like cross-over inhibition. Im-
portantly, this work focused on the temporal processing in the inner retina and
did not include any spatial components or processing across light levels, although
different types of ACs and microcircuits are activated across different stimulus
conditions (Diamond, 2017). Including data from more diverse stimulus condi-
tions will be essential for the further understanding of the connectivity structure
of retinal neurons, how it follows computational demands and links to optimal
coding strategies (see also Discussion).

While the implementation of the model in a fully differentiable manner allowed
us to train it with deep learning tools, we only got point estimates for the model
parameters. We bypassed this drawback by an ensemble of models with differ-
ent initializations, resulting in different sets of optimal parameter values. This
procedure does not fully account for compensation mechanisms or uncertainty es-
timations of the parameters. Therefore, applying a SBI method yielding in full
posterior approximations would have been desirable, but was not yet feasible for
a model with thousands of parameters.

Study III: Fovea-like Photoreceptor Specializations Underlie
Single UV Cone Driven Prey-Capture Behavior in Zebrafish

Published as: Yoshimatsu et al. (2020) In: Neuron.
Motivation

Many vertebrates have an anatomically and functionally specialized area within
the retina, the so called area temporalis or area centralis. In some species, such as
many primates or birds of prey, these specialized regions have further developed
into a fovea, where sharp vision with high resolution is possible. These regions
can differ from the peripheral regions of the retina in many aspects: A higher
cone density, specific pathways (like the midget pathway in primates), or different
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receptive field and AC sizes are only some of these specializations (Baden et al.,
2020). Another, in most species not previously investigated regional difference
could be tuning of PRs. We assumed that within the retina the properties of a
single photoreceptor type is matched to a specific set of visual tasks. To test
this hypothesis, we studied the differences of UV cone photoreceptors of larval
zebrafish across different retinal regions.

Results

We showed that UV cones in the area temporalis (‘acute zone’, AZ) of larval ze-
brafish are specialized on multiple levels and that prey capture highly relies on
these signals. First, we conducted behavioral experiments and demonstrated that
larval zebrafish can hardly capture prey in the absence of UV light or if the UV
cones were ablated genetically. Confocal microscopy images showed enlarged
outer segments of the UV cones in the AZ as well as a higher cone density. This
both facilitates photon detection. Next, we used in vivo two-photon imaging to
show that these cones use an elevated calcium baseline to detect bright objects
such as prey. Subsequent transciptomical analysis revealed that this is caused by
region-specific tuning of phototransduction genes. We summarized these findings
in a computational model for stimulus detection, which showed strong light de-
tection biases in the AZ, but only little differences for the detection of dark events
across retinal regions. The functional recordings further revealed that both re-
covery kinetics of the intracellular calcium as well as response amplitudes were
modulated by horizontal cells in the AZ, but not within the other retinal regions.
The regional differences in the pre-synaptic calcium signal were later accentuated
at the post-synaptic glutamate output, yielding higher information transmission
rates at AZ synapses. This set of regionally fine-tuned neural mechanisms facil-
itates the signaling of UV bright spots within the AZ; indicating that the AZ is
optimized for the visual task of prey capture.

Discussion

We showed that UV cones in zebrafish larva express regional specializations in
anatomy and function, and that these specializations can be linked to behavioral
relevant visual tasks. These specializations support high-resolution UV vision in
the AZ, the region that guides prey capturing. Some of the findings, like elongated
outer segments of the UV cones in the AZ, were in line with previous findings in
other species, like elongated primate foveal cones; however the light-biased AZ
in zebrafish contrasts dark biased ventral short-wavelength processing in mice
(Baden et al., 2013b). This highlights that anatomical and functional specializa-
tion can happen on different neuronal levels, can come in distinct forms across
species and is potentially guided by different behavioral tasks.
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A preview of our study highlighted the “integrative” approach by covering all
three of Marr’s principles (Westo et al., 2020). Nevertheless, there are still open
research questions: The data suggested an additional tuning of the UV cones on
a synaptic level, which we investigated in detail in the next study (Study IV). In
the presented work we focused on the signal processing in UV cones, but how
zebrafish integrate the input of all four cone types to eventually form color vision
is unclear. We will unravel this processing for the first retinal stage in Study V.

Study IV: Distinct Synaptic Transfer Functions in Same-Type
Photoreceptors

Published as: Schroder et al. (2021) In: Elife.
Motivation

Just like BCs, PRs also feature ribbon synapses to transmit the detected signal
to the next processing stage. In the preceding work (Study III), we studied UV
cone PRs and found anatomical differences in the outer segments, functional dif-
ferences in the calcium signal, but also differences in the post-synaptic glutamate
signal across different retinal regions. As discussed in Study II, different temporal
adaptation processes are potentially implemented across different BC types via
specific properties of the ribbon synapse. Together with the observed regional dif-
ferences in the post-synaptic glutamate signal, this raises the questions if and how
the synapses within one single cone type are differentially tuned across retinal
regions to facilitate the encoding of specific visual features.

Results

We first looked into anatomical differences across retinal regions of ribbon
synapses of UV cone PRs of larval zebrafish using electron microscopy. We found
not only different ribbon sizes, but also striking differences in vesicle densities,
suggesting different response properties. Next we employed in vivo dual-color
two-photon imaging and recorded simultaneously pre-synaptic calcium and post-
synaptic glutamate signals. The recorded data showed differences across the dif-
ferent zones in terms of dynamics as well as in response amplitudes. To explore
the computational implementation of the processing differences, we constructed
a model of a ribbon synapse based on previous work (Baden et al., 2014). The
model was built using relative occupancies of different vesicle pools and consists
of a set of coupled ordinary differential equations. We inferred the parameters for
each retinal region via a SBI method (Lueckmann et al., 2017) which yielded ap-
proximated posterior distributions. This gave us the possibility to compare param-
eter distributions across retinal regions. We found different calcium-to-glutamate
transfer functions depending on the location in the eye. Additionally, this al-
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lowed us to conduct a sensitivity analysis to investigate the influence of the dif-
ferent model parameters on the model output. The analysis showed, that different
properties of the ribbon synapse are highly influencing the response properties at
different time points. As a final step, we applied the model on new stimuli and
studied the encoding properties of different ribbon configurations. We found that
the calcium baseline played a major role, for example in setting an On versus Off
processing bias, but even with a fixed calcium baseline the ribbon could be fine-
tuned to facilitate different coding properties. We provided the model as an online
tool to facilitate further exploration, allowing the user to control all key parame-
ters. Overall, we showed that already on the synaptic level of single neuron types
highly specialized mechanisms can occur which favor the encoding of different
visual features.

Discussion

This study complements and extends the findings of Study III by identifying re-
gional differences on the synaptic level of UV cones. The presented model showed
parameter dependent coding properties and highlighted the importance of calcium
handling at ribbon synapses. This is in line with recent findings from Ozgcete
et al., 2020 in the mouse auditory system, in which ribbon synapses also occur.
More specifically, they found heterogeneous voltage dependency of Ca?* chan-
nels and heterogeneous Ca®" release dynamics even within individual inner hair
cells (Ozgete et al., 2020). They argue that this could be advantageous to diversify
the dynamic range for intensity coding in upstream cells. Although they focused
on calcium processing in the synapse, the authors conclude, similar to us, that sin-
gle neurons and their synapses in the sensory system are tuned to transmit specific
features of the incoming signal.

The use of SBI allowed us an in-depth investigation of the model parameters, a
comparison across different retinal regions, and to link the parameters directly
to biological properties. Furthermore, in combination with sensitivity analysis
we passed the uncertainty in the parameter space on to the parameter-dependent
expected variance of the model output. This nicely displayed the time-dependent
influence of different model parameters on the model output and highlighted the
interplay of different biological properties to tune the system to encode specific
features.
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Study V: Ancestral Circuits for Vertebrate Color Vision
Emerge at the First Retinal Synapse

Published as: Yoshimatsu et al. (2021) In: Science Advances.
Motivation

Encoding the color of an object can add behavioral relevant information to the
perceived scene. But as the spectrum of natural light is highly correlated, it is nec-
essary to compare signals of at least two distinct cone types to separate intensity
from wavelength information. For example, zebrafish possess all four ‘ancestral’
cone types (red, green, blue and UV) and three HC types which already shape
the visual signal at the very first synapse of the visual pathway. While there is
some knowledge on color processing in mice or primates, little is known about
the functional and anatomical circuit principles in zebrafish and other tetrachro-
matic species.

The goal of this study was to identify the color tuning of the different cone types
in zebrafish larva, how these tuning links to the light statistics of their natural
environment and how the computation is implemented on a circuit level.

Results

We recorded in vivo cone activity with two-photon imaging in the pre-synaptic
terminals, i.e. the output of the PRs. In the experiments we stimulated the retina
with LEDs of different wavelengths, which covered the whole activation spec-
trum of cone opsins. Based on the recordings we extracted tuning functions of the
different cone types. We found that red and UV cones matched their opsin tun-
ing profiles, whereas green and blue cones’ tuning functions were biphasic with a
color opponency in high- and mid- wavelength domains respectively. To investi-
gate the origin of these opponencies, we identified the anatomical connectivity of
cones and HCs in the outer retina via EM and confocal imaging. This connectivity
was then used to inform the possible connectivity in a linear circuit model, which
identified HCs of type one to underlie most spectral tuning. The parameters of
the model were inferred via SBI, estimating the connectivity matrix of cone to
HC connections including uncertainties. We verified the model by two-photon
voltage imaging of HC somata, and the tuning curves of the HCs matched the
model predictions surprisingly well. This indicated that our model did not only
reproduce the output but also captured the neural processing in the system.

To link the functional tuning of the cones to natural statistics, we next performed
principal component analysis (PCA) on hyperspectral images of natural scenes
and identified the axes that optimally captured the variance of the images. We
found that the first principal component covered achromatic information, and the
second and third components formed the major chromatic axes. Surprisingly, the
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tuning curves of the red and green cones almost perfectly matched the first and
second principle components. Additionally, blue cones were tuned to capture
most remaining variance when opposed to green cones, which could potentially
be implemented in the upper visual stream. UV cones however represented an
‘UV-private’ axis, which did not interfere with the other channels. We performed
the same analysis on published data of photoreceptor tuning curves from fruit
flies and found essentially the same strategy: to extract spectral information, the
encoding space was rotated by the fruit flies” PRs to the major axes of the PCA.
Overall, we established the complete architecture of color processing in the outer
retina of larval zebrafish. We showed that rotating color space into achromatic
and chromatic axes at the first synapse of the visual system may be a fundamental
principle of color vision across species.

Discussion

In this study we presented a full description of color processing at the first synapse
of the larval zebrafish’s visual system. We covered all three of Marr’s levels by
deconstructing the anatomical implementation by EM analysis, the representa-
tional level by functional recordings and modeling, and the computational level
by linking the results to natural scene statistics.

Surprisingly, we found an efficient decomposition of the visual signal into inten-
sity and color channels already at the first synapse of the system. While our study
is partly in line with theoretical work on optimal color processing (Buchsbaum
et al., 1983), it raises questions on the definition of ‘optimality’. While PCA pri-
oritizes on features and contrasts that are most common in the signal, it remains
unclear if this is the optimal strategy: some rare events could be highly relevant
for survival. The identified ‘UV-private’ channel, which potentially facilitates
prey capture (see Study III), hints that the definition of ‘optimal’ is more com-
plex, but a general theoretical framework which takes behavioral relevance into
account is still missing.

Additionally, it is not yet fully understood how the color signal is further pro-
cessed in later stages of the visual system. While our study focused on the spec-
tral decomposition of the color signal we did not include any temporal or spatial
analysis, but a composition of these features form the neural code in later stages
(Zhou et al., 2020). Disentangling these complex neural signals and linking them
to naturalistic stimuli is an interesting and challenging research direction which
will lead to a more comprehensive understanding of how the brain processes color
information.
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Discussion

In this work I presented different approaches for modeling retinal activity and
how model parameters can be inferred from experimental data. Additionally, I in-
vestigated tuning properties of photoreceptors across different retinal regions and
color processing at the first retinal stage in larval zebrafish. Throughout the pre-
sented studies, I attempted to link the three levels of Marr (Marr, 1982): biological
implementation, functional properties and performed computations.

In Study I and Study II we designed two models of system identification (SI)
which are constrained by biologically plausible structures. The presented models
do not only outperform standard black-box models of SI for the specific tasks, but
they also allow us to draw conclusions about the implementation in the biological
system. More specifically, we identified the ribbon synapse as a key feature for
short-term adaptation processes in the inner retina. Additionally, we were able
to show that the connectivity between BCs and ACs follow computational needs
for temporal processing. However, this is but the first step to more interpretable
models of SI of the retina. A first extension of this hybrid model approach to tem-
poral processing in the GC layer did highlight the necessity of adequate data to
constrain the model meaningfully (Klindt et al., 2021). It is obvious, that features
like direction or orientation selectivity cannot be studied by pure temporal stim-
uli. Additionally, different microcircuits including different ACs can be activated
under different stimulus conditions (Chen et al., 2016). Therefore, especially di-
verse spatio-temporal stimuli will be important to study spatial integration across
cell types. Another way to get more adequate data to study signal processing be-
tween different cell classes is to access functional activity across multiple layers
of the retina. Recent developments now allow to measure different cell classes
simultaneously by ‘vertical’ x-z scans (Zhao et al., 2020).

Furthermore, multimodal datasets will offer new approaches to analyze neural
systems from multiple viewpoints. Patch-seq data (consisting of paired functional
recordings, gene expression levels and morphological data (Cadwell et al., 2016))
already led to substantial progress in cell type classification in the cortex (Scala et
al., 2020; Gouwens et al., 2020). Integrating different data modalities of the same
cell into one model could also help to couple Marr’s levels. For the retina, such
a dataset could consist of a functionally annotated connectomics dataset, which
combines functional two-photon recordings of cell activity across multiple layers
with a reconstruction of the connectivity structure via electron microscopy. This
could deepen our understanding on how functional properties in the retina arise
from its circuit implementations.

25



The approach of biological constrained models of SI (see also Real et al., 2017)
is contrasted by the expanding work on DNNs modeling the retinal processing
(Mclntosh et al., 2016; Klindt et al., 2017; Maheswaranathan et al., 2018). Al-
though these models offer a prodigious accuracy, even across visual tasks, they
often lack biological interpretability and it remains difficult to draw conclusions
on the implementational level. However, in a recent work, the authors systemati-
cally reduced their retinal DNN model to minimal subnetworks that were still able
to generate complex response behaviors. By doing so, they claimed to gain con-
ceptual insights and summarize computational mechanisms (Tanaka et al., 2019).
Nevertheless, the insights remained on an abstract level and could not be linked to
the network implementation in the retina. Apart from direct comparisons to neural
circuits, retinal DNN models can also be used as an analysis tool, for example to
refine retinal cell type classification (Hofling et al., 2020).

In conclusion, constraining models of SI by biologically plausible mechanisms is
a promising avenue in systems neuroscience. Combining the benefits of modern
DNN frameworks with components of mechanistic models may lead to sophisti-
cated models which can still be efficiently trained. These models can give pow-
erful explanations on a biophysical level, allow for testing and generating new
hypotheses and may lead to new insights into signal processing in the retina in
particular and neural systems in general.

In a second line of research, we investigated regional specializations of photore-
ceptors and their color processing in larval zebrafish (Study III, Study IV and
Study V). We found that UV photoreceptors are regionally tuned on multiple lev-
els and we linked the tuning pattern to the requirements of prey capture behavior.
A study conducted in parallel suggested that neural circuits in the mouse retina are
also regionally tuned and particularly support color vision in the upper visual field
(Szatko et al., 2020). Their findings can potentially be explained by substantial
differences of the wavelength statistics between the upper and lower visual field
of natural scenes for mice (Qiu et al., 2020). These studies highlight that different
species, even without possessing a fovea, express high asymmetries within their
retinas, that these asymmetries are species dependent and that they can range from
synapses to circuits. Therefore, as highlighted previously (Baden et al., 2020), we
need to study multiple model systems and identify common principles to under-
stand the basic concepts of vision.

One challenge is to link the functional level of retinal circuits to the computation
they perform. In Study V we could provide this link by showing that color pro-
cessing at the first synaptic level in zebrafish is optimized to rotate the colorspace
in a PCA-like manner. In our work we profited from previously recorded data of
natural images (Zimmermann et al., 2018; Nevala et al., 2019) as well as from
flexible visual stimuli which allowed to measure neural responses across a broad
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spectrum of stimulus wavelengths (Zimmermann et al., 2020). This demonstrates
that to elucidate the neural network in the retina, it is of particular importance to
design meaningful stimuli for functional recordings. A perfect stimulus would in-
clude all relevant features of the natural environment and, at the same time, would
be controllable in all essential (e.g. spatial, temporal, chromatic and potentially
more unknown) dimensions. However, even then a carefully designed experimen-
tal setup remains crucial as even simple effects like refraction or reflection of the
stimulus can introduce stimulus artifacts and lead to wrong conclusions (Wang
et al., 2021). Recordings with such complex stimuli are also challenging the effi-
cient coding hypothesis as the definition of ‘optimal’ allows for some flexibility as
discussed in Section Computational Models of the Visual System (see also discus-
sion in Study V). Additionally, linking the complex stimulus space to behavioral
tasks would introduce many unknowns which makes a mathematically rigorous
derivation of optimal configurations, like for the On and Off pathway splitting in
sensory systems (Gjorgjieva et al., 2014), demanding.

In Study I, Study IV and Study V we showcased the potentials of applying sim-
ulation based inference (SBI) in system neuroscience. At the same time another
study demonstrated that SBI can be successfully applied to detailed mechanistic
models by carefully selecting appropriate priors and iteratively constraining the
parameter space (Oesterle et al., 2020).

It is long known that similar neural model output and especially simulated net-
work activity can arise from very different model parameters (Prinz et al., 2004;
Marder et al., 2011). It is important to acknowledge that this ambiguity is not a
failure of the model, but inherent to neural systems. For example, there exists a
high variability in ion channel properties which can lead to reliable and similar re-
sponse behaviors of neurons (reviewed in Goaillard et al., 2021). This robustness
mechanism complicates solving the inverse problem of parameter inference: Any
simple assignment of single best performing parameters might ignore the com-
plexity of the biological system. In the context of biophysical models, covariates
like temperature add further complexity by altering relative contributions of ion
currents or other latent variables, but may explain biological benefits of compen-
satory mechanisms (Alonso et al., 2020). An analysis of the full posterior esti-
mations, which can be obtained via SBI, can help to explain these compensatory
mechanisms and lead to new hypotheses like the role of energy consumption for
similarly behaving neurons (Deistler et al., 2021). Adding SBI to the diverse tool-
box of computational neuroscience can therefore lead to a better understanding of
model uncertainty and its link to biological variability.

Consequently, neuroscience can profit from achievements in the vibrant field of
machine learning and apply new developments made in this field. However, for
models with more than dozens of parameters, scalability remains a major obstacle.
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Although normalizing flows (reviewed in Papamakarios et al., 2019a) represent a
powerful concept to approximate arbitrary probability distributions, the curse of
dimensionality still prevents an efficient estimation of high dimensional distribu-
tions. A possible way of dimensionality reduction could be achieved by learning
potential manifolds in the parameter space. Simultaneously learning a probability
distribution on these manifolds (Brehmer et al., 2020a) could even lead to more
efficient techniques to investigate parameter dependencies .

As demonstrated in Study IV, SBI additionally allows to perform sensitivity anal-
ysis on a global scale of the parameter space. While classical gradient methods for
parameter optimization are restricted to local estimations based on higher deriva-
tives (Gutenkunst et al., 2007), SBI enables a global analysis by using the inferred
posterior distributions for a varianced based sensitivity analysis (Saltelli et al.,
2008; Glen et al., 2012; Tennge et al., 2018). Although this is a promising way to
measure the global model sensitivity, it results in a complex interplay between the
approximated posterior and the parameter influence on the model output. Disen-
tangling this interplay is a direction of further research.

Having highlighted the potentials of SBI, one of its pitfalls lies in model com-
parison and model misspecification. Common criteria for model comparison, like
Bayes’ factor, fail theoretically in the SBI setting (Robert et al., 2011) or are em-
pirically of poor quality (Marin et al., 2018). Different sampling approaches for
model selection have been proposed (Toni et al., 2010; Marin et al., 2018), in-
cluding additional training of random forest trees (Pudlo et al., 2016), which all
come with the burden of high computational costs and can be of low fidelity for
ill chosen sets of summary statistics (Marin et al., 2018).

In the context of model misspecification in Bayesian inference, current results are
mainly limited to simple linear models. Already in the setting of exact Bayesian
computation ‘worse’ models might be preferred over ‘better’ ones if no correc-
tion mechanisms are considered (Griinwald et al., 2017). The approximate com-
putation setting reveals similar difficulties, but each level of approximation (see
Section Parameter Inference) may influence the results differently and general
conclusions are difficult to draw (Frazier et al., 2020; Frazier et al., 2021). Thus, a
well specified model which is able to replicate experimental recordings is essential
for trustworthy SBI, but identifying such models remains difficult. These unsat-
isfactory intermediate results highlight the necessity for further research in the
direction of model comparison and misspecification in the SBI setting, especially
as it is becoming a more widely used tool in neuroscience and other scientific
fields.

This thesis demonstrates how recent developments in machine learning can be
successfully applied in computational neuroscience. We have seen how these de-
velopments can help to couple the three levels of Marr by allowing new types
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of biophysical constrained models as well as efficient inference methods. Fur-
ther progress in experimental techniques will increase the need for appropriate
machine learning and modeling tools to be able to cope with larger and more
complex data. A strong interaction between machine learning and neuroscience
will therefore be crucial for the further understanding of neural systems, but can
also inspire machine learning researches to make use of computational principles
found in these systems.
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