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Abstract. Although the processing of visual information in the retina has been studied in detail,
the underlying functional connectivity is not yet completely understood. While many specific
circuits are well-characterized (e.g. the rod photoreceptor pathway), a comprehensive picture
of how these microcircuits work together to form the retinal network is still lacking.
Furthermore, connectomic information, which could help dissect the functional underpinnings
of the retina, is not yet fully leveraged. The integration of different datasets and data sources to
(computational) models is a key challenge to elucidate the processing of visual information in
the retina. A step towards a comprehensive understanding of the retinal network was made in
a recent publication [1], which suggests a biophysically-constrained bipolar and amacrine cell
network model (BCN model) of light processing in the mouse inner retina, enabling in silico
experiments. Here, we extended this model to predict the responses of previously
characterized mouse retinal ganglion cell (RGC) types to full-field light stimulation [2].
Specifically, we tested how bipolar cell glutamate release can be combined in an additional
linear nonlinear model to predict RGC output (BCN-LN). We show that recordings of full-field
stimulation combined with mechanistically detailed modelling allowed us to predict connectivity
between cell types, as well as to investigate the role of inhibitory feedback and feedforward AC
modulation. In summary, this work shows how a machine-learning approach informed by
biological structures can produce interpretable and accurate predictions about neural
connectivity and circuit functions, thus explaining the hierarchical emergence of functional
RGC diversity.

Additional Details. We restricted the connection weights in our model to be positive, reflecting
the fact that direct BC input to RGCs is excitatory, obtaining a sparse connectivity matrix
between all BC and RGC types. Comparing this matrix to published connectomics and
functional connectivity data revealed a number of well-matching circuits [3] (Fig. 1b). Moreover,
by translating the weights into stratification depths in the retina’s inner synaptic layer (inner
plexiform layer; [4]), we found that RGC input weights yielded predictions of dendritic
stratifications that were largely consistent with EM data [3]. Where connectomics data is not
available or functional circuits are not yet anatomically identified, we were able to make
predictions about putative RGC connectivity.
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Next, we examined the contribution of ACs in two ways: (i) As a baseline model, we
stripped the BCN-LN model from the feedback AC modulation, which shaped the BC output,
resulting in a linear-nonlinear release model [1] with the additional linear-nonlinear block
(LNR-LN model). (ii) We added an additional pathway of feedforward AC modulation that can
simulate direct inhibitory AC inputs to RGCs (BCN-AC-LN model). We found that the baseline
LNR-LN model performed worse (Fig. 1e). Importantly, its predictions can be tested
experimentally by pharmacologically blocking different populations of ACs as in [4], allowing to
investigate the contribution of specific AC circuits in more detail. For the extended BCN-AC-LN
model, the additional AC pathway increased model performance as expected. However, while
some cells were better predicted with feedforward AC inhibition (e.g. JAM-B cells, Fig. 1d),
others were already well predicted with excitatory BC input only (e.g. On mini alpha, Fig. 1d).
Thus, we can use this approach to differentiate the importance of feedforward AC inhibition
across RGC types for spatially homogeneous stimuli. These predictions can be validated by
looking at well-studied microcircuits of RGCs that are known to depend heavily on AC
modulation (e.g. W3 cells, direction-selective RGCs). Future steps include testing experimental
predictions (pharmacology, connectivity, AC circuitry), as well as extending the approach to
spatial processing to study spatio-temporal computations, like e.g. for motion
direction-selective RGC types.



Figure 1. a) Schematic retinal circuit and translation into a computational network model. The
BCN [1] model is extended by a LN model accounting for the processing in RGCs. Optionally,
a feedforward AC pathway acting directly on RGCs is included (dark red) (BCN-AC-LN model).
b) Learned BC-to-RGC connectivity matrix. Red/orange squares indicate certain/probable
connections described in the literature, with linewidth indicating connectivity strength
(strong/unknown/weak). c) Comparison of stratification profiles for four example RGC types
(selected to showcase both good and bad matches). Jensen-Shannon divergence (JSD)
measures the match of the stratification and the bar quality index (QI) the response reliability
for a moving bar stimulus (see [2] for details). d) Model predictions for the cell types in c). e)
Performance comparison for the LNR-LN baseline model, the BCN-LN and the best performing
BCN-AC-LN model, with additional feedforward AC inhibition.
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